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Abstract. We present some new results on the rational solutions of the Knizhnik-Zamolodchikov (KZ)
equation for the four-point conformal blocks of isospin I primary fields in the SU(2)k Wess-Zumino-
Novikov-Witten (WZNW) model. The rational solutions corresponding to integrable representations of
the affine algebra �su(2)k have been classified in [1,2]; provided that the conformal dimension is an integer,
they are in one-to-one correspondence with the local extensions of the chiral algebra. Here we give another
description of these solutions as specific braid-invariant combinations of the so called regular basis intro-
duced in [3] and display a new series of rational solutions for isospins I = k + 1 , k ∈ � corresponding to
non-integrable representations of �su(2)k.

PACS. 11.25.Hf Conformal field theory, algebraic structures – 02.20.Uw Quantum groups –
11.30.Ly Other internal and higher symmetries

1 Introduction

The 2D nonlinear σ-model with a suitably normalized WZ
term, known as WZNW model [4], is a conformally invari-
ant (and therefore integrable) field theory with a huge
internal symmetry, beautiful geometric structure at the
classical level and rich algebraic content in the quantized
case. The model describes a closed (respectively, open, for
the so called boundary model) string moving freely on
a Lie group manifold G . After choosing the group, the
only parameter left which fixes the theory is a positive
integer k playing the role of WZ term coupling constant.
Here we will only consider the case of the compact group
G = SU(2) .

To solve the model, one can use different approaches
in both the classical and the quantum cases. In the ax-
iomatic approach to the quantized model one constructs
the space of states as a direct sum of superselection sectors
(tensor products of integrable representations of the cor-
responding left and right current algebras, both of which
appear to be affine algebras of the type Ĝk where G is the
Lie algebra of G and k is the level). Each sector is gener-
ated from the vacuum by a primary field. The interplay of
affine and conformal invariance leads to linear systems of
partial differential equations for the correlation functions
of primary fields (conformal blocks), one for each set of
chiral variables. These are the famous KZ equations [5,6]
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determining, in principle, the chiral structure of the the-
ory; the correlation functions of the 2D theory are recov-
ered by combining the left and the right conformal blocks
(which are, typically, multivalued) in such a way that 2D
locality is restored [7]. In some cases this can be done in
different ways constrained by modular invariance of the
WZNW partition function; for G = SU(2) this leads to
the ADE classification of [8].

The canonical quantization of the chirally split WZNW
model [9–15] leads to a description in terms of chiral fields
revealing the quantum group (QG) invariance of their ex-
change algebras which is the quantum counterpart of the
Poisson-Lie invariance of the underlying classical theory
(see [16] for a recent comprehensive exposition of the clas-
sical situation and [17], focused on the boundary WZNW
model). The fact that the monodromies of the chiral cor-
relation functions are related to Uq(G) 6j-symbols (for q

an even root of unity, q = e±i π
k+2 for G = SU(2) ) has

been known for a long time [18]. On the other hand, it is
clear that the true “internal” symmetry of the model is
much more involved (see e.g. [19] and references therein
for a recent analysis of the relation between weak C∗-Hopf
algebras and rational conformal field theories). A plausi-
ble way out of this apparent contradiction would be the
assumption [20] that Uq(G) plays the role of a generalized
“gauge” group on the extended (chirally split) WZNW so
that one is facing an alternative analogous to choosing
unitary or covariant gauges in gauge theories, the latter
necessarily including unphysical states. In the case at hand
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this means that we have to consider indecomposable rep-
resentations of both the conformal current algebra and of
the quantum group.

For the SU(2)k WZNW model the minimal exten-
sion should involve primary fields with isospins covering
at least twice the range of the unitarizable representa-
tions, 0 ≤ 2I ≤ 2k + 2 , since the indecomposable QG
counterparts relate I with k + 1 − I . Allowing for non-
integrable I , one has to expect the extended theory to be
logarithmic [21,22] (see e.g. [23] and references therein).
A fact, related to the latter, is that the commonly used
bases of KZ solutions [24,25] are ill defined because some
mutual normalizations become inevitably infinite; fortu-
nately, (regular) bases are known [3] that remain meaning-
ful in this wider range of the isospins [26]. The elements of
all these bases are given, up to a prefactor which is an alge-
braic function of coordinate differences, by multi-contour
integrals in the complex domain (identified, for n-point
correlation functions, with the Riemann sphere CP 1 with
n− 1 punctures). The braiding properties of the elements
of the regular bases have been also displayed in [3], the
corresponding elementary braid matrices being triangular
and well defined.

Let us consider the set of four-point conformal blocks
of SU(2)k WZNW chiral fields of isospin I. Among them
there is a distinguished set given by rational functions. For
0 ≤ 2I ≤ k the importance of these has been elucidated
in [1,2,27] (see also [28] where the more general prob-
lem of finding all algebraic KZ solutions has been solved)
– they are in one-to-one correspondence, provided that
the conformal dimension ∆I = I(I+1)

k+2 is an integer, with
the possible extensions of the corresponding chiral alge-
bra (the algebra of observables, in this case the current
algebra). In fact, only primary fields with integer or half-
integer conformal dimensions which are also local with re-
spect to themselves can have rational four-point functions.
Local commutativity (in the chiral sense) singles out the
Deven series and the exceptional E6 and E8 models with
diagonal pairing in the ADE classification.

The main objective of the present paper is to ex-
tend the results of [1,2] finding rational solutions for non-
integrable values of I (> k

2 ) as well. After introducing
our basic conventions and notations in Section 2, in Sec-
tion 3 we employ an alternative description of the ratio-
nal solutions of the KZ equation as braid invariant linear
combinations of the regular basis vectors. This leads to
nontrivial relations even in the known cases. New rational
solutions for I = k + 1 are displayed in the last Section 4
where we also analyze their properties. We hope to be able
to present an exhaustive study of this subject in the near
future [29].

2 KZ equation and braiding properties
of the regular basis

We will give here a short list of all needed notions and
formulas; for the lack of space we refer for details to [1–3]
and [26].

The conformal block containing four primary
fields ΦI(z) of isospin I can be expressed as

〈ΦI(z1)ΦI(z2)ΦI(z3)ΦI(z4) 〉 = DI

(
ζ, z
)

fI(ξ, η) ,

DI(ζ, z) = (ξ1 + ξ2)2I

(
η1 + η2

η1η2

)2∆I

≡ (ζ13ζ24)2I

(
z13z24

z12z34z14z23

)2∆I

(1)

(see [2]), where zij = zi − zj , ζij = ζi − ζj ,

η1 = z12z34 , η2 = z14z23 , η =
η1

η1 + η2
=

z12z34

z13z24
,

ξ1 = ζ12ζ34 , ξ2 = ζ14ζ23 , ξ =
ξ1

ξ1 + ξ2
=

ζ12ζ34

ζ13ζ24
· (2)

The function fI(ξ, η) depending only on the harmonic ra-
tios is a polynomial in ξ of degree 2I ; we are using the
convenient polynomial bases of SU(2) irreducible repre-
sentations VI and invariant tensors1.

The corresponding KZ equation for fI(ξ, η) reads(
(k + 2)η(1 − η)

∂

∂η
−

2∑
i=0

KI
i (ξ, η)

∂i

∂ξi

)
fI(ξ, η) = 0 ,

KI
0 (ξ, η) = 2I (2I(1 − ξ) − 2(I + 1)η + 1) ,

KI
1 (ξ, η) = (4I − 1) ξ2 + 2 ξ (η − 2I) − η ,

KI
2 (ξ, η) = ξ(1 − ξ)(ξ − η) . (3)

For any I in the range 0 ≤ 2I ≤ 2k + 2 equation (3)
has 2I + 1 (the dimension of Inv V ⊗4

I ) linearly indepen-
dent solutions. We will define the regular basis vectors
wIµ = wIµ (ζ, z), µ = 0, . . . , 2I as in [3] (including the
prefactor DI(ζ, z) ) 2.

As mentioned above, the solutions of the KZ equa-
tion (3) are given in terms of contour integrals defining,
in general, multivalued analytic functions of η , and we
are interested in their monodromy properties. In fact, the
set of wIµ is closed under braiding (“half monodromy”)
as well. In the case at hand (four equal isospins I )
the relevant braid group is B3 so that there are two

1 The relation of the latter with the tensor invariants can be
illustrated by the correspondence ξ1 ↔ εA1A2εA3A4 , ξ2 ↔
εA1A4εA2A3 in the simplest case I = 1/2 when there are only
two independent invariant tensor structures. Here εAB , A, B =
1, 2 is the two dimensional skew-symmetric tensor spanning
InvV ⊗2

1/2 . In terms of the harmonic ratio the first invariant
corresponds to ξ , and the second – to 1 − ξ .

2 The conformal block (1) has to be considered as a linear
combination of wIµ with coefficients restricted further by the
locality condition imposed on the 2D correlation function.
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elementary braid generators corresponding, respectively,
to the transformations

B1 :(ξ1, ξ2) → (− ξ1, ξ1 + ξ2),

(η1, η2) → (e−iπη1, η1 + η2),

B2 :(ξ1, ξ2) → (ξ1 + ξ2, − ξ2)

(η1, η2) → (η1 + η2, e−iπη2). (4)

Their action on the regular basis,

(B(k,I)
i w)Iµ = (B(k,I)

i )λ
µwIλ , i = 1, 2 ,

is given by

(
B

(k,I)
1

)λ

µ
= q2I(k+1−I)(−1)λqλ(µ+1)

[
λ

µ

]
,

λ , µ = 0, 1, . . . , 2I ,

[
λ

µ

]
=

[λ]!
[µ]![λ − µ]!

, (5)

[λ]! = [λ][λ − 1]! ( [0]! = 1 ) , [λ] =
qλ − q−λ

q − q−1

(we will fix q = e−i π
k+2 , see [26]) and

B
(k,I)
2 = F I B

(k,I)
1 F I , (F I)λ

µ = δλ
2I−µ ((F I)2 = 1I) .

(6)

The matrices B
(k,I)
1 , B

(k,I)
2 are lower, respectively, upper

triangular.
The rationality condition implies that fI(ξ, η) is a

polynomial in η of order not exceeding 4∆I [1,2]. If ∆I

(and hence, I ) is (half-)integer, polynomial solutions of
the KZ equation (3) give rise to B3 invariants (up to a
sign, for half-integer ∆I). Hence (see (1)),

(−1)2IfI(1 − ξ, 1 − η) = fI(ξ, η) = ξ2I(−η)4∆I fI(
1
ξ
,
1
η
) .

(7)

3 Braid invariant functions in terms
of the regular basis

All polynomial solutions of the KZ equation (3) for
0 ≤ 2I ≤ k (satisfying the initial condition fI(ξ, 0) = ξ2I

following from the factorization of the four-point function
into a product of two-point functions for η → 0 ) have
been found in [1,2]. The list includes the simple currents
series existing for any k

fk/2(ξ, η) = (ξ − η)k (I = k/2 , ∆k/2 = k/4) (8)

which, for integer ∆k/2 , corresponds to the Deven series
in the ADE classification, and a few exceptional cases oc-
curing for k = 10 , I = 2, 3 and k = 28 , I = 5, 9 (corre-
sponding to E6 and E8 , respectively; see [1] for explicit
expressions). Except for the solutions in (8) at odd values
of k , all the rest give rise to rational functions. How could
the latter be expressed in terms of the multivalued func-
tions of the regular basis? To answer this question, one
can make use of their simple braiding properties. Taking
into account the prefactors as well, for all KZ solutions (8)
(including those for odd k ) one has

s(k,k/2) = s(k,k/2)(ζ, z) = Dk/2(ζ, z) fk/2(ξ, η) , (9)

s(k,k/2) = sµwk/2 µ , (B(k,k/2)
1,2 )λ

µsµ = (−i)ksλ ,

i.e., s(k,k/2) are common eigenvectors of B
(k,k/2)
i , i =

1, 2 (see Eqs. (5, 6)) corresponding to the eigenvalue
(B(k,k/2)

1 )00 = (B(k,k/2)
2 )k

k and hence the coefficients sµ

of their expansion in terms of the regular basis can be
found, up to an overall coefficient, by solving a finite di-
mensional eigenvector problem. This can be easily done,
and the solution is (proportional to)

sµ =
(−1)µ

[µ + 1]
, µ = 0, . . . , k (10)

– one has to make use of a well known q-binomial identity
written in the form

k∑
µ=0

(−1)µqλ(µ+1)

[
λ + 1
µ + 1

]
= 1 for 0 ≤ λ ≤ k . (11)

For the (E6 ) case (k, I) = (10, 3) one gets s0 = s6 = 1,
s1 = s5 = − 1

[2] , s2 = s4 = 1
[3] , s3 = 3

[3]
−1
[4] . (The apparent

symmetry of the coefficients which is a general property
can be easily understood since (sµ) should be an eigen-
vector of the antidiagonal matrix F (6) as well [28].)

This result can be made more explicit in the (non-
rational) case k = 1 = 2I for which the elements of the
regular basis are known in terms of hypergeometric func-
tions [26] where it leads to the identity

(1 − η)
2
3 ( 2 ξ F1(1 − η) + (1 − ξ) η F2(1 − η) )

− η
2
3 ( 2 (1 − ξ)F1(η) + ξ (1 − η)F2(η) )

=
2
3

B

(
2
3
,
2
3

)
(ξ − η) . (12)

Here F1(η) = F
(

1
3 ,− 1

3 ; 2
3 ; η
)

, F2(η) = F
(

4
3 , 2

3 ; 5
3 ; η
)

and
B(x, y) is the beta function.

4 Polynomial solutions of the KZ equation
for I = k + 1

We have found polynomial solutions of the KZ equa-
tion (3) for I = k +1 = ∆k+1 as well – a value of I corre-
sponding to a non-integrable representation of the current
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algebra, the counterpart of the vacuum representation un-
der the duality I ↔ k + 1 − I . These solutions give rise
to braid invariant vectors (sµ) , µ = 0, . . . , 2(k+1) whose
only nonzero coefficient is sk+1 and hence, in contrast
with the cases considered in the previous section, the cor-
responding rational functions belong to the regular basis.
This fact might be important since it can shed some light
on the corresponding logarithmic CFT as well.

It is easy to obtain directly the polynomial solutions of
the KZ equation (3) corresponding to I = k + 1 for lower
values of k . Extrapolating the results, one arrives to the
expression (throughout this paragraph I ≡ k + 1 )

fI(ξ, η) = (η(1 − η))I
2I∑

m=0

I∑
n=0

CI
mnξmηn

≡ (η(1 − η))I pI(ξ, η) (13)

where pI(ξ, η) are polynomials of order 2I in ξ and of
order I in η , the coefficients CI

mn being chosen as

CI
mn =(−1)I+m+n

(
I

m + n − I

)(
m + n

n

)(
3I − m − n

I − n

)
.

(14)

Note that the overall order of fI(ξ, η) in η is 3I i.e.,
strongly below the upper bound 4∆I . One can check
directly that the polynomial (13) solves the KZ equa-
tion (3) for I = k+1 . The expression for pI(ξ, η) following
from (13, 14) can be brought to the form

pI(ξ, η) =
I∑

n=0

(
I

n

)
ηI−nξnPIn(ξ) (15)

where

PIn(ξ) =
I∑

�=0

an� ξ� ,

an� = (−1)� (I + 
)! (2I − 
)!

! (I − 
)!(n + 
)!(2I − n − 
)!

· (16)

Indeed,

pI(ξ, η) =
I∑

n=0

ηI−nξn
2I∑

m=n

(−1)m−n (17)

×
(

I

m − n

)(
I + m − n

m

)(
2I − m + n

2I − m

)
ξm−n

=
I∑

n=0

ηI−nξn
2I−n∑
�=0

(−1)�

(
I




)(
I + 


n + 


)(
2I − 


2I − n − 


)
ξ�

which is equivalent to (16). The form of the coefficients
an� (16) implies that

PIn(ξ) =
(−1)n

n!
ξ2I+1 dn

dξn
(ξn−2I−1F (−I, I + 1; n + 1; ξ)).

(18)

At these special integer values of the parameters the hy-
pergeometric functions in (18) are expressible in terms of
Jacobi polynomials P(α,β)

� (x) [30],(
n + I

I

)
F (−I, I + 1; n + 1; ξ) = P(n,−n)

I (1 − 2ξ)

≡
I∑

�=0

(−1)I−�

(
I + n




)(
I − n

I − 


)
ξI−�(1 − ξ)�

=
1
I!

(
1 − ξ

ξ

)n dI

dξI

(
ξI+n(1 − ξ)I−n

)
. (19)

It can be checked that fI(ξ, η) satisfies the two
relations of equation (7). To prove this, one can use
the explicit expression (14) for the coefficients CI

mn =
(−1)I CI

2I−m I−n and some combinatorial identities.
Checking the second relation, one should also have in mind
that fI(ξ, η) only contains powers of η in the range be-
tween I and 3I .

More details concerning the role of the corresponding
rational functions as vectors from the regular basis will be
given elsewhere [29].
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